If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+250X-125=0
a = 1; b = 250; c = -125;
Δ = b2-4ac
Δ = 2502-4·1·(-125)
Δ = 63000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{63000}=\sqrt{900*70}=\sqrt{900}*\sqrt{70}=30\sqrt{70}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(250)-30\sqrt{70}}{2*1}=\frac{-250-30\sqrt{70}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(250)+30\sqrt{70}}{2*1}=\frac{-250+30\sqrt{70}}{2} $
| a^2=-4a | | 215-x=3/x | | 5(6-4x)-3(3x+1)=0 | | X^2-250x-12500=0 | | y=10,000(14,750)+250 | | 2x+1=3x=4 | | 3(3x+3)=-27 | | y=10000(14750) | | 4x-40=280 | | a^2-4a-26=6 | | 8(3x-10)=64x | | -2(x+1)+9x=45 | | 13(y-4)-3(y-9)=5(y+4( | | (3x+9)÷2=9 | | -7+25=3x | | F(8)=6x+5 | | 5/7(m+7/3)=3.33 | | 5/7(m+7/3)=3/1/3 | | 5/7(m+7/3)=3.1/3 | | 4×(x-6)=x-9 | | 12x+13x+55=180 | | 2(x+3)-15=40 | | 1y=32 | | y/4-y/8=32 | | 3y=64 | | 60=(x/2)-17.25 | | 2x+13+x=x | | 5.6(6.2r-3.8)=7.3 | | x-(0.13*x)=5 | | -7y-7+7=5*3y*9-284 | | 5.7(8.3r-1)=39.1 | | 16/4=2.67x/4 |